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Abstract. In this paper, a singularity structure analysis of some important inhomogeneous 
nonlinear evolution equations ( N E B )  of AKNS type inmduced by BuIt?ev, Zakhamv and 
Mikhailov (BZM) is carried out and they are shown to possess the Painlev6 property. The 
olher integrability properties such as Lax pair, Biicklund Vansformation and soliton solutions 
of these systems are also brought out in debil from the Painlev6 analysis. We also point 
out that the non-Painlev6 nature of the system of partial differential equations satisfied by the 
variable spectral parameter may not affect the Painlev6 property and hence the integrability of 
the asociated NLEES. 

1. Introduction 

The study of wave propagation in an inhomogeneous medium and the associated nonlinear 
partial differential equations (PDEs) have assumed greater significance ever since the 
identification of solitons in them [1,2]. In the above nonlinear PDEs, the spectral 
parameter is regarded as a variable quantity that satisfies an overdetermined system of 
partial differential equations (PDES) which is uniquely determined by the auxiliary linear 
problem. By considering the variable spectral parameter, Burtsev et al [3] have generated 
the deformations of various well known integrable equations and have also proposed that to 
every equation with a constant spectral parameter to which the scheme of inverse scattering 
method [4] is applicable, there corresponds an entire class of equations with a variable 
spectral parameter. They have also noted that the system of PDEs satisfied by the variable 
spectral parameter may not have the Painlevt property in general and that these systems 
may be integrable in quite a new sense. In this paper, we take up those deformed systems 
of AKNS type discussed explicitly by Burtsev et al 131 in the appendix of their paper and 
investigate their singularity Structure. We prove that all these AKNS type equations satisfy 
the Painlev6 property [SI. We also deduce other integrability properties like the Lax pair, 
the Backlund transformation (BT) and soliton solutions from the Painlev6 analysis. We also 
suggest that the non-Painlev€ nature of the system of PDEs of the variable spectral parameter 
may not affect the Painlev€ property of the deformed PDEs and hence their integrability. 

The plan of the paper is as follows. In section 2, we investigate the singularity structure 
aspects of the deformed MKdV equation and prove its Painlevt property. We also obtain its 
Lax pair and soliton solutions. Section 3 is concerned with the deformation of the nonlinear 
Schrodinger (NLS) equation. In particular, we concentrate on the singularity structure aspects 
of cylindrical NLS equation. Other deformations of the NLS equation such as the linearly 

03054470/95/236977+11$19.50 @ 1995 IOP Publishing Ltd 6911 



6978 

x-dependent and radially symmetric NLS equations are also briefly mentioned. Section 4 is 
devoted to a study of the deformed KdV system. A very brief mention of the deformed Kaup 
system is also made. Finally, we conclude with a brief discussion of results in section 5 and 
point out that the Painlev6 property of the deformed PDES is not affected by the Painlev6 
property of the equation satisfied by the variable spectral parameter with the Maxwell-Bloch 
equation as an example. 
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2. Deformed modified Korteweg-deVries (MKdV) equation 

The deformed MKdV equation given in the paper by Burtsev et a1 131 (their equation (AS)) 
has the form 

In order to analyse the singularity structure [SI of this non local equation, we introduce the 
transformation 

U 2  = U, (2) 

so that equation (1) can be rewritten as a set of coupled nonlinear PDES of the form 

ut + 3u,, + xuuI = f[4uux + 2vu, + 6xu,ux] 
U 2  = U,. 

2.1. The singulariQ structure analysis 

We consider first the positive sign on the right-hand side of equation ( 3 4  and assume the 
leading orders of the local Laurent expansion in the neighbourhood of a movable non- 
characteristic singular manifold $@, t )  to have the form 

U = u o Q  U = uo$ (&r ,@f#O)  (4) 
where UO, uo are analytic functions of (x. t )  and a and p are integers to be determined. 
Substituting (4) into (3) and balancing the nonlinear terms against the most dominant linear 
terms, we get 

For finding resonances, that is powers at which arbitrary functionscan enter into the Laurent 
series, we now substitute 

+ . . . (7)  = uo$,-' + . . . + uiq,-; + . . . = uo@-l + . . . + ,,.&I I 

into (3) and equate the coefficients of $j-4 and $I-* to get 

Evaluating equation (8) with (6). we obtain the resonances as 

j = - l , l , 3 , 4 .  
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The resonance at j = -1 naturally represents the arbitrariness of the singular manifold 
@(x, t )  = 0. In order to prove the existence of arbitrary functions at the other resonance 
values, we now substitute the full Laurent expansion 

into the equation (3). Collecting the coefficients of (@-3, @-I), we obtain 

(104 
2UOUl = U&. (1Ob) 
From the above set of equations (lOa,b), it is evident that u1 is arbitrary. Similarly from 
the coefficients of (@-z, @O), we obtain 

+ ~ X U O ~ &  + 6xuo4Ax = 4Uo@ + 6xuoX@: + 6 x u o @ ~ ~ ~ , ,  + 2 ~ 0 4 :  

From (12). one can easily check that the two linear equations degenerate into a single 
equation and hence one of the coefficients u3 0 r . q  is arbitrary. Similarly from the 
coefficients of (@O, @), one can show that either u4 or u4 is arbitrary. Thus, the general 
solution (U. u) (x .  t )  of equation (3) admits therequired number of arbilrary functions without 
the introduction of any movable critical manifold, thereby satisfying the Painlev6 property 
and hence the system is expected to be integrable. 

Similarly, by considering the negative sign on the right-hand side of equation ( 3 4  and 
proceeding in a similar fashion, the Painlev6 property can be easily verified. 

2.2. Lapair  

As equation (3) satisfies the Painlev6 property, we shall now proceed to obtain the 
integrability properties associated with it. To construct the Lax pair, the Laurent 
expansion (7) is truncated at the constant level term as 

U = uo4-' .+ U1 U = uo4-1 + U1 (13) 
where uo and uo satisfy equation (6). The above condition in fact can be treated as an 
auto Backlund transformation of equation (3) if both the sets (U. U) and (u1. VI) satisfy the 
evolution equation (3).  Substituting (13) into (3) and equating different powers of @, we 
obtain the following set of differential equations. 



where we have made use of the fact that U O C $ ~ ~  = uo& as can be seen from equation (14). 
In order to derive the linear eigenvalue problem from equation (ZO), we make use of the 
following transformation 

Substituting equation (21) in (20), we obtain after simplification' 

Without loss of generality, the nature of the equation (22a) permits us the freedom to 
choose 

where the parameter h can now be a function of time. Introducing the squared eigenfunctions 
in the form a0 = @;, bo = @;, & = llrl@~, a1 = -1412 and 61 = - 4 2 ,  we get 
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The time-dependent part of the Lax pair can be similarly explicitly worked out from 
equations (16a) and (17) using the transformation (21) in the form 

where A, B and C have the following expressions: 

B = 4h2xu - 2ih(xu), - (xu),, i 2u x ( s u 2 4  
C = f4hzxu f 2ih(xu), q= ( k ~ ) ~ ~  + 2u ( x !U2+ (25) 

Compatibility of (23) and (24) requires that the spectral parameter should be time dependent 
and evolve as 

A, = 4h3. (26) 
Solving (26) we have 

1 
A(z ,  t )  = 

where z is a constant which can also serve as a spectral  parameter^ that does not depend 
on the space-time coordinates. The spectral problem (23)-(27) is exactly the same as the 
one given by Burtsev et a1 [3], which is now obtained straightforwardly from the Painlev6 
analysis. 

2.3. Backlund transformation and soliton solutions 

Let us now generate (as an example) the soliton solutions of the deformed MKdV equation 

For this purpose, we define the function 

so that the AKNS system and its time evolution equations (23x25) are equivalent to the 
Riccati equations 

r , = 2 i h r + u + u r 2  
r, = 2Ar f B - Cr2. 

Now to construct the Backlund transformation [6],  we define a new function r' = 1 f r 
satisfying equation (30) with a potential d(x) defined by 

U! = U - 2.3, tan-' r. (32) 
Taking the trivial input solution U = 0, we can obtain the one-soliton solution as 

U' = 2171 s ~ h ( 2 q l x  +Si) ( 3 3 4  

91 = ih = -49; (33b) 
 where 
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and 61 is a constant. With a suitable scale change of variables, the standard MKdV soliton 
can be recovered from equation (33). The procedure can be extended to obtain multisoliton 
solutions. 
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3. Deformations of the nonlinear Schriidinger (m) equation 

The linearly x-dependent NLS equation 

i q t + ( y z + w ) ( q x x  t2lqlzq) t 4 q X  tq[L1ql2ci.x?) = O  (34) 

and the radially symmetric NLS equation 

(35) 
1 1 7 1  

iqr + q r r  + 2lql2q + ;qr - -p + 4q 1 ;; Iql2dr’ = 0 

as well as their geometrically/gauge equivalent spin systems have already been shown to be 
completely integrable and their corresponding Lax pairs have been derived through Painlev6 
analysis in [7,8]. So we consider the cylindrical NLS equation alone in this section. 

3.1. Cylindrical nonlinear SchrLjdinger (NU) equation 

We consider the evolution equation 

i (qt + 5) +qx, + 21sl2q = 0. (36) 
Equation (36) describes cylindrically diverging quasiplane envelope waves in a nonlinear 
medium. In order to analyse this equation from the singularity structure point of view, we 
put q = a  and q* = b and rewrite equation (36) and its complex conjugate in the form 

i ( a, + - 3 +a,, + 2a2b = 0 

-i b, + - -t- b,, 4- 2ab2 = 0. 

Assuming the leading orders of the solutions of equation (37) to have the form 

we obtain 

(374  

(376) ( 3 
a = a&” b =bo@B (38) 

cu=,f?=-l aoba = -@:. (39) 
To find the resonances, we substitute the Laurent expansion 

into equation (37) and equate the coefficients of (@jm3, @j-3)  to zero to give 

a = ao,$-l + . . . + aj&l + . . . b = bob-] + . . . + bj@j-* + . . . (40) 

[ ( j  - 1;:;- 2 ~ :  ( j  - 13- 2)@:] [ 21 = 0. (41) 

Solving (41), we get the resonance values 

j = -1,0,3,4. (42) 
Again j = -1 represents the arbitrariness of the singular manifold $(x ,  t )  = 0 while 

equation (39) shows the arbitrariness of either a0 or bo. By collecting the coefficients of 
(bo, bo) and (4’. b l ) ,  one can show that either a3 or h and a4 or b4 is arbitrary along the 
same lines as in the case of deformed MKdV equation while the coefficients of (@-z, (rZ) 
and (@-I, @-’) uniquely determine the pairs of coefficients (al, bl) and (az, b2). Thus 
equation (37) satisfies the Painlev6 property. 
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3.2. Luxpair and soliton solutions 

As before, we truncate the Laurent series at the constant level term to give 

a = ao4-l +a, b = bo@-' + bl (43) 
where a1 and bl satisfy equation (37). Substituting (43) into equation (37) and equating the 
coefficients of different powers of @, we get the following set of differential equations: 

w3, C3): 

(@+. 9-3: 
(444 

nob0 ~-bZ. 2 

-ia& - 2 a 0 A  - no@zz + 2a;bi + 4aoboal = 0 
+ib& - 2 b 0 ~ @ ~  - bo@xxx + 2albi + 4aobob1 = 0. . ~ (446) 

( @ - I ,  @ - I ) :  

iao 
2t 

iaoi + - -6 aoxr + 2[a:b0 + 2aoa1b11 = 0 

W C )  
. ibo 

2t 
-ibot - - + bkx + 2[b:ao + Zboalbl] = 0. 

Differentiating (44a) with respect to time r ,  we get 

aorbo + aobo, = -2&&. (45) 
Making use of (446) and (44c) in (45) and after simplification, we are now led to the 
following equation 

2i& _ -  & 2i[aib: - b&:1 = i[axxbo - borrao] - -[&bo - bkaol 
t 

+2i@x,[a~xb~ +aibor - bi,ao - Biaorl. 

Rearranging equation (46) and after a little manipulation, we obtain 
(46) 

Then defining ao = i*;, bo = -i+i, @x = it/ll*z, ai = -iq and bl = iq'. we get the space 
part of the eigenvalue problem 

and the spectral parameter defined above is a function of both space and time variables and 
is of the form 

(49) 

As before, the space-time dependence in the spectral parameter can be avoided provided it 
is replaced by equation (49) with j~ serving as a spectral parameter. Similarly, the time part 
of the Lax pair can be worked out as in the previous case and is of the form 

(P + ~ 1 4 )  .~ 
t VP.,X, 0 = 

*t = V* (504 

A = -2iL' + i[qI2 (50b) 

where V has the same form as (24) with its components now having the following form 

B = -2ilq - qx C = -2ilq' + 4:. 
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To generate soliton solutions, one can proceed as in section 2.3 and obtain the Backlund 
transformation (BT) 

where again the function r is of the same form as equation (29). The one-soliton solution 
turns out to be 

where CY and ,S are constants. 

4. Deformed KdV equation 

The deformation of the KdV equation has the form [3] 

ut = 4Q.u.x + 2Qxu + QUI 
~ 

X 

Under the transformation 

(54) 
5 .. 27 

1 6x2 8 
~ ( x ,  r)  = -- + a(.?, 8 ,? = +3n t -t 

the system (53) is reduced to the form 

Ut + (xu)xx, + uxx = [ - 3 x 2  - 2u J U ..I - 3 2  (55) 
x 

where the hats have been dropped for convenience. 

4.1. Painlevd analysis 

To analyse the singularity structure aspects of equation (55). we put U = U, so that (55) 
becomes 

uxr + 4vx, + XV,,,, + 8v: + 2ux,v + 6xu,v,, = 0. (56) 

U = v o p  (57) 

a=-1 U0 =2&. (58) 

(59) 

( j  - I)[( j - Z)( j  - 3 ) [ j  - 4) - 12( j - 2) + 241 = 0. (60) ~ 

j = -1, 1,4,6. (61) 
As before, in the above Laurent series V I ,  u4 and V6 can be proved to be arbitrary. Hence 
the system (53) through (56) is expected to be integrable. 

To bring out the leading order behaviour of the above equation, we put 

in equation (56) and obtain 

To find the resonances, we substitute the Laurent series 
,, = voq,-l + . . . + vjq,i-l + . . . 

in (56) and compare the coefficients of 9j-' to give 

Solving (60), we get 
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4.2. Lax pair 

To derive the Lax pair, we substitute the truncated Laurent series 

U = uo4-1 + U1 (62) 
in (56) and compare the coefficients of various powers 'of 4 to give the following set of 
equations: 

4-5:  

4-4: 

U 0  = 24% ( 6 3 4  

-24~042~-  2 4 X U o L @ 2  - 3 6 ~ ~ 0 4 : 4 ~ ~  + 1211i4: + 24XUoVo2~: 

+ 6 x ~ ~ 4 ~ 4 ~ ~  = 0 (636) 
4-3: 

4 4 2 4 ~  + 4W:4xxx - 10&4xz - 3~4x4:~  +%:VI + 4~4:4.xn 
+ ~ X U I ~ @ ;  = 0 ( 6 3 ~ )  

4-2: 

-24xx4t - 4 4 ~  - 244xLx4x - w:~ - I O X ~ ~ ~ ~ , , , ,  + 4 ~ 4 ~ ~ 4 ~ ~ ~  
+324: - 324:Vl~ - I ~ U I @ P $ ~ , ,  - 12X4:~l, - 3 6 ~ 4 ~ 4 ~ ~ ~ i ,  = 0 (636) 

4-1: 

4 x x z  +-44xmx + X 4 x u x x  + 164xxvix + W r v ~ x x  + 2~14x.w + 6~4xzvlzx  
+ ~ X U I , ~ ~ , , ,  = 0. W e )  

Evaluating from (63c) and (636) (equation (63b) is just an identity), one arrives at 
the following equation after simplification 

 letting 

4 x  = *2 (65) 

32@: - 8@'+ 3 ~ @ ~ @ ~ . , ,  - 3 ~ @ @ ~ ~ ,  - ~ x u I , , @ ~  = 0. (66) 
Rearranging equation (66) and expressing the spectral parameter h in terms of the 
eigenfunction of the required form, we obtain the spatial part of the eigenvalue problem of 
equation (53) through equation (56) as 

and substituting (65) in (64), we obtain 

9Oxx + (U +A)* = 0 (67) 
where now the spectral pzameter is a function of space and time. The time pact of the Lax 
pair of equation (53) can be worked out in a similar fashion from equations (63c, d) and 
(65) and it has the form 

@r = A@x + B$ (68) 

A = 4 h + Q  B=-iA, .  (69) 
where 
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The compatibility condition of equations (67) and (68) requires that the spectral parameter 
should evolve as 

R Radhu and M Lakshmunan 

The soliton solutions can be generated using Backlund transformations as before. 
Finally, the inhomogeneous Kaup system [3,9] given by 

U, + ; (xu2),  + (x& = -q 
tlt + (xau), +(xu),, = -vu 

(714 
( 7 ~  

can again be investigated through Painlev6 analysis and the Lax pair can also be derived 
on the same lines as before [IO]. The results are in conformity with [3]. 

5. Conclusion 

In this paper, we have investigated the singularity structure aspects of the deformations of 
various well known (1 + 1)-dimensional integrable equations discussed by Burtsev et a[ 
[3] in the appendix of their paper and showed that all these specific equations satisfy the 
PainlevC property. We have also generated the Lax pair straightforwardly from the Painlev6 
analysis and used them to generate soliton solutions. Further, Burtsev etal [3] and Burtsev 
and Gavitov [ 111 have pointed out that in general the variable spectral parameters themselves 
satisfy nonlinear partial differential equations, which may be non-Painlev6 in nature. As 
an example, the Maxwell-Bloch equation with constant coefficients is cited in [3], whose 
variable spectral parameter satisfies a PDE which on similarity reduction is stated to admit 
movable critical points [Ill.  On the other hand, considering the same Maxwell-Bloch 
equation with constant coefficients, 

En = p Nt + i ( p * E + p E " )  = C  pg = N E  (72) 
an explicit analysis of the Laurent series of the solution as was done in the previous sections 
shows that the resonances occur at 

j = -1,O, 2,3,4 (73) 
and further analysis shows that the Painlevt property is indeed satisfied. So it appears 
that the Painlev6 property of the equations defining the spectral parameter need not affect 
the Painlevt property of the integrable deformations of the original nonlinear evolution 
equations. At least, we have not come across any example contrary to this, and we believe 
that in integrable deformations of the evolution equations, the Painlevt property will hold. 
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