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Abstract. In this paper, a singularity structure analysis of some important inhomogeneous
nonlinear evolution equations (NLEES) of AKNS type introduced by Burtsev, Zakharov and
Mikhailov {2M) is carried ont and they are shown to possess the Painlevé property. The
other integrability properties such as Lax pair, Bicklund transformation and soliton solutions
of these systems are alse brought out in detail from the Painlevé analysis. We also point
out that the non-Painlevé nature of the system of partial differential equations satisfied by the
variable spectral parameter may not affect the Painlevé property and hence the integrability of
the associated NLEES.

1. Introduction

The study of wave propagation in an inhomogeneous medium and the associated nonlinear
partial differential equations (PDEs) have assumed greater significance ever since the
identification of solitons in them [1,2]. In the above nonlinear PDEs, the spectral
parameter is regarded as a variable quantity that satisfies an overdetermined system of
partial differential equations (PDEs) which is uniquely determined by the auxiliary linear
problem. By considering the variable spectral parameter, Burtsev et @/ [3] have generated
the deformations of various well known integrable equations and have also proposed that to
every equation with a constant spectral parameter to which the scheme of inverse scattering
method [4] is applicable, there corresponds an entire class of equations with a variable
spectral parameter. They have also noted that the system of PDEs satisfied by the variable
spectral parameter may not have the Painlevé property in general and that these systems
may be integrable in quite a new sense. In this paper, we take up those deformed systems
of AKNS type discussed explicitly by Burtsev et af [3] in the appendix of their paper and
investigate their singularity structure. We prove that all these AKNS type equations satisfy
the Painlevé property [5]. We also deduce other integrability properties like the Lax pair,
the Béacklund transformation (BT) and soliton solutions from the Painlevé analysis. We also
suggest that the non-Painlevé nature of the system of PDEs of the variable spectral parameter
may not affect the Painlevé property of the deformed PDEs and hence their integrability.
The plan of the paper is as follows. In section 2, we Investigate the singularity structure
aspects of the deformed MKdVv equation and prove its Painlevé property. We also obtain its
Lax pair and soliton solutions. Section 3 is concerned with the deformation of the nonlinear
Schridinger (NLS) equation. In particular, we concentrate on the singularity structure aspects
of cylindrical NLS equation. Other deformations of the NLS equation such as the linearly
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x-dependent and radially symmetric NLS equations are also briefly mentioned. Section 4 is
devoted to a study of the deformed KdV system. A very brief mention of the deformed Kaup
system is also made. Finally, we conclude with a brief discussion of results in section 5 and
point out that the Painlevé property of the deformed PDEs is not affected by the Painlevé
property of the equation satisfied by the variable spectral parameter with the Maxwell-Bloch
eguation as an example.

2. Deformed modified Korteweg—deVries (MKdV) equation

The deformed MKdV equation given in the paper by Burtsev et al [3] (their equation (A.5))
has the form »

by (Xt)gpy = :[:EI:(xfuzdx) u:l . 4]

In order to analyse the singuiarity structure [5] of this non local equation, we intreduce the
transformation

ul =y, 2)
so that equation (1) can be rewritten as a set of coupled nonlinear PDEs of the form

ty + Bty + Xtpyy = H[duvy + 2vu; -+ 6xu,v,] (3a)

W =v;. (36)

2.1. The singularity structure analysis

We consider first the positive sign on the right-hand side of equation (3a) and assume the
leading orders of the local Laurent expansion in the neighbourhoed of a movable non-
characteristic singular manifold ¢ (x, ¢} to have the form

u = upd® v = yop? (bx, B¢ # 0) @)

where g, vy are analytic functions of (x, ¢} and o and £ are integers to be determined.
Substitating (4) into (3) and balancing the nonlinear terms against the most dominant linear
terms, we get

a=8=-1 )]
with
Vo = —¢x vy = ¢:. ©

For finding resonances, that is powers at which arbitrary functions can enter into the Laurent
series, we now substitute

u=ugd ™ b v=vgp " ey T e (T)
into (3} and equate the coefficients of ¢/~* and ¢/~2 to get

[(j = DG =2 — 3 + 6wzl 6(j — 1>uo¢§] [uf] =0 (®)
2up —G-D¢: |Lo]

Evaluating equation (8) with (6), we obtain the resonances as

Jj=-1,134 o)
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The rescnance at j = —1 naturally represents the arbitrariness of the singular manifold
¢(x,1) = 0. In order to prove the existence of arbitrary functions at the other resonance
values, we now substitute the full Laurent expansion

w s m -
u=3 wel™  v=3 ue!

j=0 j=0
into the equation (3). Collecting the coefficients of (93, ¢=!), we obtain
Guop? + 6xitoxd2 + 6xtupBydux = 4ugP> + 6x U0y D7 + ExtuoPrPrz + 2uod? (102)
2uou1 = Yox. ) (10b)

From the above set of equations (10a,5), it is evident that v is arbitrary. Similarly from
the coeﬂicients of (@72, ¢°), we obtain

iy = 6x ¢3 ——[mo®: + duger — modex + Ixtigex s — 3xuﬂx¢xx + xuodrex + 4¢’xul

+6xu1:92 — 2uodsv) — Exutodyut] _ (11a)
U = 6x ¢3 [6x¢ + 6x¢§le — 206 — Buplioy + 200 — OxupUgex + 6x¢,3x

—2xPrPrrr — 8u0u1¢x — 12x g uoury + 4¢3”1]- (115)
Again, by collecting the coefficients of (¢, ¢'), we have

2Ho —2q§x M3z | _ A

[-12x¢g 12xuo¢§] [u3 } = [B] (124)
where
A = vz — 2uqua ‘ (126)

B = —ugr — 3uger — Xlorxx + 4t0(Vix + v2ge) + duqvoe + 4u2¢§

+6x[t0x (V1x + V2¢) — U0PxV2x — Prx (t1x + UaPr) + t2xP7]

+2[uoxvr — uoady — @x(uix +u290)1. - (12¢)
From (12), one can easily check that the two linear equations degenerate into a single
equation and hence one of the coefficients «3 or vy is arbitrary. Similarly from the
coefficients of (#°, ¢2), one can show that either u4 or v, is arbitrary. Thus, the general
solution {u, v}{x, #) of equation (3) admits the required number of arbitrary functions without
the introduction of any movable critical manifold, thereby satisfying the Painlevé property
and hence the system is expected to be integrable.

Similarly, by considering the negative sign on the right-hand side of equation (3a) and

proceeding in .a similar fashion, the Painlevé property can be easily verified.

2.2, Lax pair

As equation (3) satisfies the Painlevé property, we shall now proceed to obtain the
integrability properties associated with it. To construct the Lax pair, the Laurent
expansion (7) is truncated at the constant level term as

=g+ v=1up + (13)
where up and vy satisfy equation (6). The above condition in fact can be treated as an
auto Bicklund transformation of equation (3) if both the sets (x, v) and (u1, v;) satisfy the

evolution equation (3). Substituting (13) into (3) and equating different powers of ¢, we
obtain the following set of differential equations.

-
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(@™, ¢~

uy = e¢? Up = —€Qx. (14)
@ ¢7):

6uod? + x[6uoxd? + biodx Pux] = l—6uguad, — 6x¢:Luoroly] (15a)

2ugti = Vg (15b)
(#2, ¢%:

—tiod: — Ougxds — 3unPrx — 3XUOxPr — IXUgxPry — XoPrsx
= €[duguoy — 4vodeu1 + 6xt v — OxUoP Uiy — OX U1 Vo

+2ugeug — 2updrvn] (164)
& = vy (165)
@)
#oe + Bbtgex + Xthoxzx = €[4{uov1y + U1tor) + 6x{uozv1x + H1xv0x)
+2ugev1 + 2u1x 00} (17)
where € = %1. )
Now considering (14a) and differentiating with respect to time ¢, we have
Upllgy = €Px Pxs- (18)

Evaluating o from eguation (17) and ¢, from equation (162) (equation (15a) is just an
identity and (158) and (16%) define u; and vy in terms of ¢) and substituting them in
equation (18), we are now led to the following equation after simplification,

Ud, — 2u1uoPxx — 2ot1xPs — tolorx + 2urgup; = 0. (19)
This equation can be simplified as

|:qu +2u1¢x:| =0
iy x
where we have made use of the fact that o, = up.¢, as can be seen from equation (14).

In order to derive the linear eigenvalue problem from equation (20), we make use of the
following transformation

{20)

_  Laobr + Boay)

uy = +/ eaph, u 21
9 apby t e (21}
Substituting equation (21) in (20}, we obtain after simplification
ao: + 4al¢x:| [bo; + 4b1¢x:|
—— | +|——]| =0 22a
[ 2an x 2bg x ( )

Without loss of generality, the nature of the equation (22«) permits us the freedom to
choose

Gox + da19x _ s boz +4b19;
[ 2ay ] =A@ =1 [ 280

where the parameter ). can now be a function of time. Introducing the squared eigenfunctions
in the form aq = ¥, by = ¥2, ¢x = ¥1¥a, a; = —u/2 and by = —eu/2, we get

:| = falty =—ir (228}

Ve =U¥ ¥ =) U—m[o _1]+[ﬂ 0}. (23)
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The time-dependent part of the Lax pair can be similarly explicitly worked out f.rom
equations (16a) and (17) using the transformation (21) in the form

=V¥ V= [é _BA] (24)

where A, B and C have the following expressions:

A = 4ix3x £ 2iA (x f ut dx)
X

B =4)2xu — 2iA(xu)y — (X)yy ok 20 (x f u? d.x)

X

C = £42%xu & 20(xu)y T (xt)ee + 200 (x f u’ dx) . (25)

X
Compatibility of {23) and (24) requires that the spectral parameter should be time dependent
and evolve as

Ay =403, (26)

Solving (26) we have
1
Mz, ) = e 27
0= T @

where z is a constant which can also serve as a spectral parameter that does not depend
on the space-time coordinates. The spectral problem (23)-{27) is exactly the same as the
one given by Burtsev et af [3], which is now obtained straightforwardly from the Painlevé
analysis.

2.3. Bicklund transformation and soliton solutions

Let us now generate (as an example) the soliton solutions of the deformed MKdV equation

uy + (XU yxx +2[(x f uzdx) u] =0. 28)

For this purpose, we define the function

¥
F=— 29
4 (29

so that the AKNS system and its time evolution equations (23)—(25) are equivalent to the
Riccati equations
Iy = 20T + u + ul™ (30)
T, =2AT + B —CI2, (31} -
Now to construct the Backlund transformation [6], we define a new function TV = 1/T
satisfying equation (30) with a potential #’'(x) defined by

0=y —~28,tan"I T, 32)
Taking the trivial input solution ¥ = 0, we can obtain the one-soliton solution as
u' = 25 sech(2nx + &;) - (33a)

‘where

m=ik  me=—dn e
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and d; is a constant. With a suitable scale change of variables, the standard MKdv soliton
can be recovered from equation (33). The procedure can be extended to obtain multisoliton
solutions.

3. Deformations of the nonlinear Schrédinger (NLS) equation
The linearly x-dependent NLS equation

X
ige + (%2 + H2x)(gx +2001Pg) + 2112 (qx +q f lg[* dx') =0 (34)

-0
and the radially symmetric NLS equation

. ) 1 1 "1
igi+ g +20alg + 10— o +4g [ SlaPar =0 39)
1]

as well as their geometrically/gavge equivalent spin systems have already been shown to be
completely integrable and their corresponding Lax pairs have been derived through Painlevé
analysis in [7,8]. So we consider the cylindrical NLS equation alone in this section.

3.1. Cylindrical nonlinear Schridinger (NLS) eqguation
‘We consider the evolution equation

g+ 2) + g+ 2aPg=0. (36)

Equation (36) describes cylindrically diverging quasiplane envelope waves in a nonlinear
medium. In order to analyse this equation from the singularity structure point of view, we
put ¢ = a and ¢* = & and rewrite equation (36) and its complex conjugate in the form

. a
i (a; + -2?) + aye +2a% =0 (37a)
. b
—i (b, + E) by - 2007 = 0, (378)
Assuming the leading orders of the solutions of equation (37) to have the form
a=ag®  b=bh’ (38)
we obtain
ag=8=-1 apbp = —¢3. (39)
To find the resonances, we substitute the Laurent expansion
a=ap™ +--da¢lT F b=bgT +o + B 4 (40)
into equation (37) and equate the coefficients of (¢/~3, $/=3) to zero to give
G- DG~ 2¢} 243 ] aj
, b =0 41
[ 282 G -G —262 | | b ¢b
Solving (41), we get the resonance values
Jj=-1,0,3,4. (42)
Again j = —1 represents the arbitrariness of the singular manifold ¢(x, £} = 0 while

equation (39) shows the arbitrariness of either ay or by. By collecting the coefficients of
(@, $°) and (¢!, ¢!), one can show that either a3 or ba and ay4 or by is arbitrary along the
same lines as in the case of deformed MKdv equation while the coefficients of (@2, ¢~2)
and (¢!, ¢~} uniquely determine the pairs of coefficients (aq, by) and (ap, b3). Thus
equation (37) satisfies the Painlevé property.
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3.2. Lax pair and soliton solutions
As before, we truncate the Laurent series at the constant level term to give
a=ayp™" +a b= byl + by (43)

where ¢; and b; satisfy equation (37). Substituting (43) into equation (37) and equating the
coefficients of different powers of ¢, we get the following set of differential equations:

@=3, 072

aghy = —¢2. (444)
(@7, 672 )

—igg: — 2a0xde — GoPrx + 2a§ﬁ>| + dapbpa; =0 .

+iboge — 2bosPx — Bodrx + 2a155 + dapboby = 0. - (44b)
(o', 07

iag, + _Iia?[) -+ Ager + 2{&1250 + 2apa15n1 =0

: ib
—ibg — ‘2—;’ + by + 2[6%a0 + 2boar 1] = 0. , (440)

Differentiating (44a) with respect to time ¢, we get
aocbo + agbor = —2¢x Pyt (45)

Making use of (44b6) and (44¢} in (45) and after smphﬁcatlon, we are now led to the
following equation

¢Z ighex

=t —2ilafb} — bja) = ilaoexbo — boxao] — = =ldobo — baxd]
£
+2igelaixbo + arbor — brrao — bidox]- (46)
Rearranging equation (46) and after a little manipulation, we obtain
i [w] __1 i' [M:{ = ..1_. (47)
[24)] x 2t bO x 2

Then defining ay = ulri, b = —11,&2, ¢, = iy 1};2, a1 = —ig and b; = ig*, we get the space
part of the eigenvalue problem

0

and the spectral parameter defined above is a function of both space and time variables and
is of the form

Y = Uy U=ildg+i[§= q:l (48)

A, x, 1) = w - - (49}

As before, the space-time dependence in the spectral parameter can be avoided provided it
is replaced by equation (49) with u serving as a spectral parameter. Similarly, the time part
of the Lax pair can be worked out as in the previous case and is of the form

Ye=Vy (50a)
where V has the same form as (24) with its components now having the following form )
= —2iA* +ilg|* = —2iAg — g, =-2iAg"+4;.  (508)
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To generate soliten solutions, one can proceed as in section 2.3 and obtain the Bicklund
transformation (BT)
20 —Ty)
I—|r S
where again the function I is of the same form as equation (29). The one-soliton solution
turns out to be

q'(x) =qx)+

28 Baf + 28x 4if, 5 X ax
1) =——sech| ——— + 8 — - — 4 — 52
g(l) tsec|: ” +nexptfx ‘ET+16+2 (52)
where o and 8 are constants. :
4. Deformed Kdv equation
The deformation of the Kdv equation has the form [3]
Ky = %Qxxx + 2Q0.n + Quy (53a)
1 4u
0=-7 [z (Zux + ?) d. (538
Under the transformation
=g aG k=22 P=2l 54)
HBEE e T = =%
the system (53) is reduced to the form
Uy (XU gxr Uy = [ — 3xu® — 24 f u dx] —3u? ' (55)
X

where the hats have been dropped for convenience.

4.1. Painlevé aralysis

To analyse the singularity structure aspects of equation (55), we put ¥ = v, so that (55)
becomes

gy b AUy + XVspex + 802 + 20,0 + 6x0; v, = 0. (56)
To bring out the leading order behaviour of the above equation, we put

v = vgg” G7
in equation (56} and obtain

o=—1 ug = 2¢,. (58)
To find the resonances, we substitute the Laurent series

v=vp T 4 byl (59)
in (56) and compare the coefficients of ¢/ to give

G- DIG -G -3 —49 - 12(j -2)+24] = 0. (60)°
Solving (60), we get

j=-L14,6 (61)

As before, in the above Laurent series vy, v4 and vg can be proved to be arbitrary. Hence
the system (53) through (56) is expected to be integrable.
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4.2, Lax pair
To derive the Lax pair, we substitute the truncated Laurent series
v=wd" + (62)

in (56} and compare the coefficients of various powers of ¢ to give the following set of
equations:

-

vo = 2¢; (63a)
b

~ 2413 — 24xv0,87 — 36x v by + 120362 + 2xvyrios

+61U[2)¢x¢xx =0 . (63b)
¢~

4¢§¢r + 48¢'§¢'x.\:x - 10¢f¢xx - 3x¢x¢’§x + 2453”1 + 4x¢;?c'¢xxx

+6rmagt =0 €
¢—1: R R )

—'2¢xx¢t — 4 ¢x¢xr - 24¢xxx¢'x - 2405;2;'; - 10x¢’x¢xxxx -+ 4x¢xx¢xxx

+32¢f - 32¢3le — 12010 ¢xx ~ 12x¢3”1:x — 36xg Przi; =0 (63d)
qb“lz . .

Drxr T Prrrr F XPrannx + 16002 V1x + 20, V1py + 201000 + 632 V122
FOxV P = 0. . (63e)

Evaluating ¢,, from (63¢) and (63d) {equation (635) is just an identity), one arrives at
the following equation after simplification

% —8¢; + Sﬁjéfﬂ - gx% - ;xcﬁmx = 3xvix¢x = 0. (64)
Letting

by = Y - (65}
and substituting (65) in {64}, we obtain

3297 — B % o+ 3xYe Ve — 3 Vier — 3xVpc¥? = 0. (66)

Rearranging equation {66) and expressing the spectral parameter A in terms of the
eigenfunction of the required form, we obtain the spatial part of the eigenvalue problem of
equation (53) through equation (56} as

Yex + (0 + l)w =0 : (67)

where now the spectral parameter is a function of space and time. The time part of the Lax
pair of equation (53) can be worked out in a similar fashion from equations (63¢, d) and
{65) and it has the form

Y = Ay + By (68)
where

A=#+0Q  B=-la. - - (69)
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The compatibility condition of equations (67) and (68) requires that the spectral parameter
should evolve as
=t =R (70)
x x
The soliton solutions can be generated using Bicklund transformations as before.
Finally, the inhomogeneous Kaup system [3, 9] given by

uy + Fxu)s + (xm)s = -1 (71a)
e+ (i) + (X)pex = —1ut {71b)

can again be investigated through Painlevé analysis and the Lax pair can also be derived
on the same lines as before [10]. The results are in conformity with [3].

5. Conclusion

In this paper, we have investigated the singularity structure aspects of the deformations of
various well known {1 + 1)-dimensional integrable equations discussed by Burtsev et al
[3] in the appendix of their paper and showed that all these specific equations satisfy the
Painlevé property. We have also generated the Lax pair straightforwardly from the Painlevé
analysis and used them to generate soliton solutions. Further, Burtsev et al [3] and Burtsev
and Gavitov [11] have pointed out that in general the variable spectral parameters themselves
satisfy nonlinear partial differential equations, which may be non-Painlevé in nature. As
an example, the Maxwell-Bloch equation with constant coefficients is cited in [3], whose
variable spectral parameter satisfies a PDE which on similarity reduction is stated to admit
movable critical points [11]. On the other hand, considering the same Maxwell-Bloch
equation with constant coefficients,

E,=p N: +3(0"E+pE*) =¢ ps=NE (72)

an explicit analysis of the Laurent series of the solution as was done in the previous sections
shows that the resonances occur at

j=-1,0,2,34 (73)

and further analysis shows that the Painlevé property is indeed satisfied. So it appears
that the Painlevé property of the equations defining the spectral parameter need not affect
the Painlevé property of the integrable deformations of the original nonlinear evolution
equations. At least, we have not come across any example contrary to this, and we believe
that in integrable deformations of the evolution equations, the Painlevé property wiil hold.

Acknowledgments

The anthors acknowledge the initial collaboration of this work with Dr K Porsezian. RR
wishes to thank the Council of Scientific and Industrial Research, Government of India, for
providing a Senior Research Fellowship. The work of ML forms a part of a research project
sponsored by the Department of Atomic Energy (DAE), Government of India,

References

[1} Calogero F and Degasperis A 1978 Commun, Math. Phys. 63 155
[2] Lakshmanan M and Bullough R K 1980 Phys. Lez. §0A 237
i3] Bustsev S P, Zakharov V E and Mikhailov A 'V 1987 Teor. Math. Fiz. 70 323



Deformed nonlinear evolution equations of AKNS type 6587

[4] Zakharov V E and Shabat A B 1974 Func. Anal. Appl 8 228
(5] Weiss I, Tabor M and Camnevale G 1983 J. Math. Phys. 24 532
[6]1 Miura R (ed) 1976 Backiund Transformatton: Lecture Notes in Mathematics 5I5 (Berlin: Springer)
[7] Porsezian K and Lakshmanan M 1991 J. Math. Phys, 32 2923
[8] Radha R and Lakshmanan M 1994 Chaos, Solitons and Fractals 4 181
[9] Kaup I J 1975 Prog. Theor. Phys. 54 396
[10] Porsezian K 1994 Phys. Lerr. 191A 229
[11] Bumsev S P and Gabitov | R [994 Phys. Rev. A 49 2065



